

MICHAEL SANKUR

+1 (805) 368-5557

michael.sankur@gmail.com

PROFESSIONAL EXPERIENCE

Chelle

Data Scientist

August 2023 - present

- Develop retrieval-augmented generation platform for LLM-assisted document analysis.
- Develop and run experiments for optimizing LLM prompting and usage for NLP techniques such as chunking, named entity recognition, and knowledge graph generation using mlflow.
- Develop multi-document context knowledge graph generation algorithm for accelerated learning and enhanced AI information retrieval.
- Create and integrate vital components into LLM platform including SQL database services, API endpoints, LLM integration, and testing framework

HyperGiant Industries

Data Scientist

August 2021 - April 2023

- Designed and implemented solution strategy for optimization of electric grid operator response for reducing severe weather effects on electric transmission grid.
- Used tensorflow to build models of effects of weather on electricity generation capacity and user demand, integrating SQL databases for weather and user demand data.
- Implemented predictive optimization using CVX, coupled with models weather effect models, for reducing incidents of high electric line loading.
- Produced simulation framework of electric transmission grid, using OpenDSS in Python, for development and testing of preventative and response strategies for extreme weather events, and deploy on FastAPI endpoint.
- Tested time-series anomaly detection with temporal convolutional neural networks.
- Developed and maintained CI/CD process for simulation, modeling, and optimization, with Microsoft Azure and Docker.

Lawrence Berkeley National Lab

Berkeley, CA

Computation Project Scientist

April 2016 - July 2021

- Led team of three engineers in agile development of comprehensive software package for computation-speed-focused power grid simulation for integration with reinforcement learning.
- Led team of two engineers in development of Modelica package for multiple reinforcement learning implementations, including extremum seeking.
- Researched unsupervised and reinforcement learning for optimization of control policies for complex and integrated energy systems.
- Employed reinforcement learning with tensorflow and pytorch for optimization of building energy use controllers.
- Developed models of battery energy storage, grid-integrated power electronics, and associated controller algorithms, for reinforcement learning, and deployed within tensorflow environment.
- Deployed and monitored online model-free optimization algorithms for increased integration and additional utility of distributed energy resources on electric distribution grids.

- Derived linearized model of power flow physics for use in scalable optimization programs, such as LP, QP, MILP. Deployed model in multiple optimization power grid optimization algorithms, including model-predictive control.

TECHNOLOGY SKILLS

Programming Languages: Python, MATLAB, Julia

Machine Learning: Tensorflow, Keras, sci-kit learn, deep learning, unsupervised learning

Cloud and Computing: AWS, Spark, PostgreSQL, docker, FastAPI

Optimization: Convex, nonconvex, mixed-integer, model-free, online, stochastic

EDUCATION

Doctorate of Philosophy, Mechanical Engineering

University of California, Berkeley

2017

Berkeley, CA

Master of Science, Mechanical Engineering

University of California, Berkeley

2015

Berkeley, CA

Master of Science, Aerospace Engineering

University of California, San Diego

2009

San Diego, CA

Bachelor of Science, Mechanical Engineering *cum laude*

University of California, San Diego

2008

San Diego, CA

CERTIFICATIONS

Databricks Associate Developer for Apache Spark 3.0

2023

SELECTED PUBLICATIONS

M. D. Sankur, D. Arnold. “Extremum Seeking over a Discrete Action Space.” presented at the *2021 American Control Conference*, 2021.

M. D. Sankur, R. Dobbe, A. von Meier, E. Stewart, D. Arnold. “Optimal voltage phasor regulation for switching actions in unbalanced distribution systems.” *2020 IEEE Power & Energy Society General Meeting (PESGM)*. IEEE, 2020.

M. Sankur, M. Baudette, J. MacDonald, D. Arnold, “Batch measurement extremum seeking control of distributed energy resources to account for communication delays and information loss,” in *Proceedings of the 2020 Hawaii International Conference on System Sciences*, 2020.

M. Sankur, R. Dobbe, A. von Meier, D. Arnold, “Model-free optimal voltage phasor regulation in unbalanced distribution systems.” *IEEE Transactions on Smart Grid* 11.1 (2019): 884-894.

M. Sankur, D. Arnold, “Extremum Seeking Control of Distributed Energy Resources with Decaying Dither and Equilibrium-based Switching,” in *Proceedings of the 2019 Hawaii International Conference on System Sciences*, 2019.

Full publication list: https://scholar.google.com/citations?user=J_eybbEAAAJ&hl=en