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Model-Free Optimal Voltage Phasor Regulation in
Unbalanced Distribution Systems

Michael D. Sankur, Roel Dobbe, Alexandra von Meier, and Daniel B. Arnold

Abstract—The proliferation of voltage Phasor Measurement
Units (PMUs) into electric power distribution grids presents new
opportunities for utility operators to manage their systems more
effectively. In particular, distribution-level PMUs can serve as
proxy measurements for active and reactive power flows, thus
alleviating the need for current transformer-based measurements
for certain applications. In this work, we explore the use of
distribution PMU measurements to optimally control line power
flows without explicit measurements of these quantities and
without a priori knowledge of the underlying distribution system
topology. To do so, we extend a 2 dimensional Extremum Seeking
(2D-ES) control paradigm to simultaneously manage Distributed
Energy Resource (DER) active and reactive power contributions
in unbalanced distribution systems. Simulation results show the
ability of the proposed approach to virtually island different
portions of a 3-phase unbalanced the network using DER
injections while maintaining proper voltage magnitudes in the
rest of the network.

Index Terms—Distributed energy resources, Voltage regulation,
Model-free control, Optimal control, Virtual islanding, Microgrid

I. INTRODUCTION

The proliferation of new types of sensors into the electric
power distribution system is providing deeper insights into
grid operation and is driving innovation around new paradigms
for system management. Among these new sensing devices,
distribution voltage phasor measurement units (PMUs) pro-
vide types of measurements that can enable novel uses for
Distributed Energy Resources (DER) to provide system-level
benefits with minimum utility expense. Distribution voltage
PMUs are already emerging in the marketplace either as
standalone units [1] or embedded within other system com-
ponents [2], [3], [4]. These devices provide access to voltage
magnitude and phase angle data, which can serve as a proxy
for active and reactive power flows. Distribution voltage PMUs
may represent an attractive choice for utilities to gain access
to system line flows as these devices do not require the
use of current transformers in order to collect voltage phase
magnitude and phase angle measurements.

The use of distribution PMU technology to inform more
advanced control applications already have started to appear
in literature. The work of [5] proposed the use of synchronized
voltage phase angle measurements to curtail over-generation of
renewables. Additionally, the authors of [6] considered voltage
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angle thresholds as criteria to connect renewable generation.
Both works refer to this control activity as “Angle Constrained
Active Management”, or ACAM.

One emerging application for the use of distribution voltage
PMUs is to serve as proxy measurements for active and
reactive power flows. This data, coupled with new approaches
to manage DER, could then in turn be used to enable a host
of applications including power target tracking and virtual
islanding.

Several works have emerged that consider more advanced
methods for islanding portions of electric distribution grids.
In [7], the authors consider a two-tiered control system for
microgrid islanding, consisiting of a centralized controller
for the microgrid, and distributed controllers for DER. The
authors’ approach considers system frequency and network
voltage magnitude for microgrid stability and reconnection.
The authors of [8] investigate autonomous operation of mi-
crogrids, the islanding process, and reconnection process. The
authors propose a system to minimize voltage magnitude error
and voltage angle error between the microgrid and the main
grid in order to minimize transient effects when disconnecting
and reconnecting a microgrid.

Many other approaches found in literature for controlling
distribution grids formulate the decision making process as an
optimization program, often referred to as an Optimal Power
Flow (OPF) problem [9], [10], [11], [12]. An OPF frame-
work allows for proper modeling of the network topology,
impedances and control equipment, the incorporation of safety
constraints, and the formulation of various objective functions
that can reflect important operating objectives such as loss
minimization and cost of generation or control action. How-
ever, there is sparse literature on strategies that aim to directly
control the voltage phasor in OPF formulations. The work of
[9] proposes a distributed control framework to enable DER
to track single-phase AC optimal power flow solutions using
the Alternating Direction Method of Multipliers (ADMM).
The authors of [10] consider a multi-timescale stochastic
volt/var control method capable of controlling legacy voltage
regulation systems as well as DER. Some of the authors of
the present work consider optimal governance of DER in a
model-free setting [11]. Additional recent strategies for DER
control are cataloged in [12].

Due to the nonlinear nature of power flow equations, many
OPFs are formulated as quadratically constrained quadratic
programs (QCQPs). A popular method for analyzing such
OPFs is relaxation via semidefinite programming (SDP) [13],
[14]. It is well documented that relaxation of OPF problems
via SDP often fails to achieve a rank-one solution [15], [16],
[17].
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As an example, in the work of [16] too many binding
constraints will preclude convergence to a rank-one solution.
The authors of [17] explored the extension of SDP to weakly
meshed networks. Their technique was able to achieve a rank-
one solution only after incorporating significant penalties on
reactive power dispatch, effectively limiting the feasible region
of control. Finally, in [14], the authors faced difficulty in ob-
taining a rank-one solution for certain network configurations.

In order to ameliorate these issues, the authors have previ-
ously explored the use of Extremum Seeking (or ES) to con-
trol active and reactive power injections of DER. Extremum
Seeking is a nonlinear and model-free control technique that
has been used to enable real time optimization in a variety
of applications including robotic motion control [18] and
solar PV maximum power point tracking (MPPT) [19]. The
approach is model-free in the sense that the algorithm does
not utilize any exogenous knowledge about the system over
which it is optimizing in the decision-making process.

The ES scheme operates by perturbing the local action space
and, subsequently, observing the effect of these perturbations
in system outputs. From these observations, an input to output
mapping (i.e. a gradient) is extracted that is used to determine
proper actions at the next time instant. The process is repeated
until the gradient being extracted, on average, becomes 0.

In the scheme, individual DER, each controlled by a
separate ES controller, modulate their active and reactive
power consumptions/injections sinusoidally. These sinusoids
propagate through the network, affecting system voltages and
power flows. Measurements are then collected from locations
in the network where control authority is desired. From these
measurements, a system-wide fitness function (essentially an
OPF objective function) is computed and broadcast to all DER.
Using this broadcast objective, which is a scalar value, the
ES controllers can extract their respective gradients needed to
perform optimization. Obviously, the speed of the approach
is dependent on the rate at which data can be collected
from points of interest in the network and the speed of
objective function computation and broadcast. The overall
scheme presents less of a burden from an implementation
standpoint as it only requires measurements at points of the
network where control action is desired, unlike centralized
OPF approaches that require knowledge of all system loads.
The ES approach has been successfully demonstrated in a
power hardware in the loop environment in controlling real
PV inverters for feeder voltage regulation [20].

Recently, we have explored the use of a 2-dimensional
Extremum Seeking (2D-ES) algorithm to control the real
and reactive power contributions of DER [11] in balanced
electric power distribution systems. This approach successfully
enabled DER active and reactive power injections to track
substation active power and voltage targets while simulta-
neously regulating feeder voltages. The algorithm did not
require the system topology, line segment impedances, or
global knowledge of load behavior.

In this work, we extend the 2D-ES approach to regulate
distribution voltage phase angles. Using this extension, we
formulate a model-free optimization problem to virtually
island a portion of a distribution network via modulating

2D-ES CONTROLLER NOMENCLATURE

Ψ Objective function
fm mth 2D-ES probe frequency
ωm mth 2D-ES probe angular frequency
au,m mth 2D-ES probe amplitude for active power channel
hu,m mth 2D-ES high-pass filter frequency for active power

channel
lu,m mth 2D-ES low-pass filter frequency for active power

channel
ku,m mth 2D-ES integrator gain for active power channel
ûm mth 2D-ES active power setpoint
um mth 2D-ES active power dispatch
av,m mth 2D-ES probe amplitude for reactive power channel
hv,m mth 2D-ES high-pass filter frequency for reactive power

channel
lv,m mth 2D-ES low-pass filter frequency for reactive power

channel
kv,m mth 2D-ES integrator gain for reactive power channel
v̂m mth 2D-ES reactive power setpoint
vm mth 2D-ES reactive power dispatch

DER power injections while simultaneously providing voltage
regulation. Additionally, we provide a convergence proof of
the 2D-ES scheme for optimizing convex objective functions
in unbalanced (meshed and un-meshed) distribution networks.

This paper is organized as follows. In Section II, we provide
an overview of the 2D-ES scheme as well as a convergence
proof for unbalanced distribution grids. We present simulation
results in Section III that show the ability of the approach to
virtually island a portion of the network via regulating distri-
bution voltage phasors. We then provide concluding remarks
in Section IV.

II. ANALYSIS

In this section, scalars are represented by plain letters.
Vectors are represented by bold lowercase letters, and vectors
that collect a set of similar scalars are represented by the bold
lowercase letter of the scalar. Matrices are represented by bold
uppercase letters. The notation ◦ refers to the Hadamard (i.e
entry-wise) product. The diag (x) operator returns a square
matrix with the elements of x on the diagonal, and zeros for
all off-diagonal indices.

A. Preliminaries

We begin with a discussion of the physics of a distribu-
tion network. Consider an unbalanced distribution network of
arbitrary topology, where N denotes the set of nodes, and
L denotes the set of lines that connect nodes. Kirchoff’s
Voltage Law (KVL) expressed for two adjacent nodes m and
n connected by line (m,n) is:

[em ◦ ∠δm = en ◦ ∠δn +Zmnimn]Pmn
, (1)

where em =
[
eam∠0, ebm∠0, ecm∠0,

]T
is the real vector

of node voltage phasor magnitudes at node m, δm =[
δam, δ

b
m, δ

c
m,
]T

is the vector of votlage phase angles at node
m, em◦∠δm is the complex vector of voltage phasors at node
m where ∠δm =

[
1∠δam,∠1δbm, 1∠δ

c
m

]T ∈ C3×1, Zmn is the
impedance matrix for line (m,n), imn =

[
iamn, i

b
mn, i

c
mn,

]T
is the vector of node current phasors on line (m,n) from node
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m to node n. The notation [·]Pmn
indexes the equation by the

set of phases (Pmn) of line (m,n), as in [14], [21]. It should
be noted that eφm =

∣∣eφm∠δφm
∣∣ and δφm = ∠

(
eφm∠δφm

)
where

the superscript φ denotes an arbitrary phase.
Kirchoff’s Current Law (KCL) for node m is written as:

im +
∑

n:(m,n)∈L

[imn]Pmn
= 0 , (2)

where im =
[
iam, i

b
m, i

c
m,
]T

denotes the current entering node
m. Taking the Hadamard Product of em ◦ ∠δm with the
complex conjugate of (2) and substituting for em ◦ ∠δm by
using (1) inside the summation, gives:

em ◦ ∠δm ◦ i∗m . . .

+
∑

n:(m,n)∈L

[(en ◦ ∠δn +Zmnimn) ◦ i∗mn]Pmn
= 0 . (3)

This can be rewritten as in terms of loads, power injections,
and line power flows as:

dm + µm +
∑

n:(m,n)∈L

[(smn + lmn)]Pmn
= 0 , (4)

where dm =
[
dam, d

b
m, d

c
m,
]T

is the vector of complex
loads (including capacitors), µm =

[
µam, µ

b
m, µ

c
m,
]T

is the
vector of complex power injections (due to DER), smn =[
samn, s

b
mn, s

c
mn,

]T
is the vector of complex power phasors

for line (m,n) entering node n, and lmn =
[
lamn, l

b
mn, l

c
mn,

]T
is the vector of complex power losses on line (m,n).

Finally, we can rewrite (1) by substituting line current with
line power divided by node voltage:

[em ◦ ∠δm = en ◦ ∠δn +Zmnsmn � (en ◦ ∠δn)]Pmn
,
(5)

where � denotes Hadamard division (index-wise division). For
a full discussion of how to explicity define voltage phasor
magnitude and voltage phasor angle from (4) and (5), the
reader is invited to view [21].

For an unbalanced distribution network with N nodes and
L line segments, let e denote the collection of all voltage
magnitudes, δ denote the collection of all voltage angles, p
denote the collection of all line segment active power flows,
and q the collection of all line segment reactive power flows,
where entries of e, δ,p, q corresponding to nonexistent phases,
nodes, or lines are omitted:

e =
[
ea1 , e

a
2 , . . . e

a
N , e

b
1, e

b
2, . . . e

b
N , e

c
1, e

c
2, . . . e

c
N

]T
, (6)

δ =
[
δa1 , δ

a
2 , . . . δ

a
N , δ

b
1, δ

b
2, . . . δ

b
N , δ

c
1, δ

c
2, . . . δ

c
N

]T
, (7)

p =
[
pa1 , p

a
2 , . . . p

a
L, p

b
1, p

b
2, . . . p

b
L, p

c
1, p

c
2, . . . p

c
L

]T
, (8)

q =
[
qa1 , q

a
2 , . . . q

a
L, q

b
1, q

b
2, . . . q

b
L, q

c
1, q

c
2, . . . q

c
L

]T
. (9)

Without loss of generality, consider C controllable DER
capable of injecting or sinking both active and reactive power
into the distribution grid. Let the vector µ represent the col-
lection of all DER active (u) and reactive (v) power injections:

µ =
[
uT ,vT

]T
= [u1, u2, . . . , uC , v1, v2, . . . , vC ]

T
. (10)

Lastly, let y denote the collection of the aforementioned
terms e, δ,p, q,u,v as:

y =
[
eT , δT ,pT , qT ,uT ,vT

]T
. (11)

B. Mapping from 2D-ES Power Injections to Network States

Let y = f(µ) denote the nonlinear mapping from µ → y
which can be constructed from (5) for all nodes m ∈ N and
(4) for all lines (m,n) ∈ L. The mapping f can be found by
successively substituting rows of (4) and (5) into one another
and collecting terms until the right-hand side of the system
of equations contains only the elements of µ. As such, the
mapping f(µ) captures all of the nonlinearities associated
with 3 phase and unbalanced power flow. Note that we do
not need to explicitly compute this mapping in the subsequent
analysis. We make the assumption that such a vector mapping
exists and that it is analytic in µ.

Without loss of generality, suppose the collection of 2D-
ES controllers for a particular system are used to minimize a
convex objective of the form:

Ψ =
1

2
(y − y∗)TM(y − y∗) , (12)

where M is a symmetric positive semi-definite matrix (for Ψ
to be convex) and y∗ is the optimal network state. The scalar
function Ψ can represent system losses, deviation from a pre-
defined voltage or power flow schedule, or a wide array of
other objectives. We assume that this function is determined
by an external entity (the distribution system operator, for
instance). As f is analytic in µ, we consider a first order
Taylor expansion of (y − y∗) around the point µ∗, with
y∗ = f(µ∗):

y − y∗ = f(µ)− f(µ∗) ≈ Jµ(µ∗)(µ− µ∗), (13)

where Jµ is the Jacobian of f (we assume this is full rank).
Substituting (13) into (12) yields:

Ψ =
1

2
(µ− µ∗)T Jµ(µ∗)TMJµ(µ∗)︸ ︷︷ ︸

B

(µ− µ∗) ,

=
1

2
(µ− µ∗)TB(µ− µ∗) .

(14)

The matrix B is positive semi-definite and symmetric due to
the full rank of Jµ(µ∗).

C. Extremum Seeking Overview

Here we provide an overview of the two-dimensional Ex-
tremum Seeking approach that governs the active and reactive
power contributions of individual DERs. A detailed analysis of
the algorithm with a convergence proof for a convex objective
function for unbalanced distribution systems is provided in
Section II-D. There are many variations of ES algorithms, but
the one considered here can be intuitively thought of as an
approximate gradient-based descent process. For this type of
extremum seeking, a small perturbation is injected into system
input channels. This dither causes changes in the system states
(voltage magnitudes and phase angles, and line active and
reactive power flows). States at points in the system where
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control is to be exercised are collected via sensors which, in
turn, are used to compute the global objective function, Ψ. The
present value of this scalar function is then broadcast to all 2D-
ES controllers, each of which can then extract their “averaged"
gradient to determine the proper active and reactive power to
inject into the system at the next timestep.

A block diagram of the 2D-ES approach is shown for a
single controller enclosed by the red dashed line in Fig. 1.
The feedback controller consists of two loops, one of which
governs active power injections and the other governing
reactive power. Here, the objective function, Ψ(u,v), is a
function of two independent vectors, where u is the collection
of DER active power injections and v is the collection of
DER reactive power injections. We refer to the quantities u
and v as active and reactive power “dispatch", that is, the
active and reactive power that is injected into the system.
The “Objective" block constitutes the mapping of active and
reactive power injections to quantities measured by sensors
in the distribution grid that are used to construct Ψ(u,v).
Individual 2D-ES controllers, in this case, operate by injecting
a sinusoidal perturbation of au cosωt in the active power input
channel, and av sinωt in the reactive power input channel.
These dither signals propagate throughout the distribution grid
causing Ψ(u,v) to have a D.C. component and an oscillatory
component. Measurements of the objective function, which
are broadcast to each 2D-ES controller, are passed through
washout (high-pass) filters in both the active and reactive
power loops. Following high-pass filtering, the resulting signal
in each channel is demodulated with the same sinusoidal
function and frequency as the dither (e.g. cosωt in the active
power loop and sinωt in the reactive power loop). Then, the
signal in each loop is passed through a low-pass filter, followed
by an integrator with negative gain. We refer to the resulting
signals, û and v̂, as active and reactive power “setpoints".
These setpoints are then summed with their respective dither
signals and fed back into system (i.e. the objective function
block). The signals ξ̂u and ξ̂v are estimates of the gradient of
the objective function with respect to u and v.

An illustration of multiple DER managed by individual
n 2D-ES controllers optimizing a common objective is also
presented in Fig. 1. As is shown in the figure, the 2D-
ES controllers operate in parallel, each of which manages a
different component of the input vectors u and v. All 2D-ES
controllers utilize the same scalar input signal, Ψ(u,v). The
theory of extremum seeking, as discussed in [22], guarantees
convergence of (u,v) to a region around the optimum (u∗,v∗)
provided “unique" frequencies are chosen for each of the 2D-
ES blocks, where it must be ensured that: ωi 6= ωj and
ωi + ωj 6= ωk for distinct i, j, and k. This will prevent the
different 2D-ES controllers from interfering with one another
when extracting their respective gradients [22].

D. Stability Analysis

We now show that the collection of n 2D-ES controllers
operating in parallel (as depicted in Fig. 1) will minimize (14).
To begin, let µ̂ denote the vector of active power and reactive
power setpoints of all 2D-ES controllers as in (15), let A

denote a square matrix with probe amplitudes on the diagonal
as in (16), and let r(t) represent a time varying vector of probe
sinusoids as in (17):

µ̂ =
[
ûT , v̂T

]T
= [û1, û2, . . . , ûC , v̂1, v̂2, . . . , v̂C ]

T
. (15)

A = diag
(

[au,1, . . . , au,C , av,1, . . . , av,C ]
T
)
, (16)

r(t) = [cosω1t, cosω2t, . . . , cosωC , t . . .

sinω1t, sinω2t, . . . , sinωCt]
T
.

(17)

Let ρ denote the vector of the outputs of the 2D-ES
controller high-pass filter outputs as in (18), ε denote the
vector of difference between the objective function and the
outputs of the 2D-ES controller high-pass filters as in (19),
and ξ denote the vector of the outputs of the 2D-ES controller
low-pass filters as in (20).

ρ = [ρu,1, ρu,2, . . . , ρu,C , ρv,1, ρv,2, . . . , ρv,C ]
T
, (18)

ε = [εu,1, εu,2, . . . , εu,C , εv,1, εv,2, . . . , εv,C ]
T
, (19)

ξ = [ξu,1, ξu,2, . . . , ξu,C , ξv,1, ξv,2, . . . , ξv,C ]
T
. (20)

Let H denote a diagonal matrix of high-pass filter cutoff
frequencies as in (21), L denote the diagonal matrix of low-
pass filter cutoff frequencies as in (22), K denote the diagonal
matrix of 2D-ES controller integrator gains as in (23), and 1
denote the vector with all entries being 1 as in (24).

H = diag
(

[hu,1, . . . , hu,C , hv,1, . . . , hv,C ]
T
)
, (21)

L = diag
(

[lu,1, . . . , lu,C , lv,1, . . . , lv,C ]
T
)
, (22)

K = diag
(

[ku,1, . . . , ku,C , kv,1, . . . , kv,C ]
T
)
, (23)

1 = [1, 1, . . . , 1]T ∈ R2C×1 , (24)

As in Fig. 1, the active power, and reactive power, injections
of the mth 2D-ES controller are:

um = ûm + au,m cosωmt ,

vm = v̂m + av,m sinωmt .
(25)

With (10) and (15) – (17) all 2D-ES controller active and
reactive power injections, can be expressed compactly ((25)
for all m ∈ {1, 2, . . . , C}) as:

µ = µ̂+Ar(t) . (26)

In Fig. 1, ρ represents the high frequency content of the
objective function Ψ, which can be thought of as how Ψ is
changing with respect to the sinusoidal probes. The variable ε
(not shown in Fig. 1) represents the low frequency content of
the objective function Ψ, which can be thought of as how Ψ
is changing with respect to the setpoint, µ̂, as defined in (27):

ε = Ψ(µ, r(t)) · 1− ρ . (27)

We introduce the shifted set of coordinates:

µ̃ = µ̂− µ∗ , (28)
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Objective

s
s+hu,m

×

2a−1
u,m cosωmt

lu,m
s+lu,m

−ku,m
s

+

au,m cosωmt

s
s+hv,m

×

2a−1
v,m sinωmt

lv,m
s+lv,m

−kv,m
s

+

av,m sinωmt

ρu,mσu,mξ̂u,mûm

ρv,mσv,mξ̂v,mv̂m

2D-ES m
2D ES m Active Power Channel

2D-ES m Reactive Power Channel

Ψ(µ)µ

2D-ES 1 (ω1, au,1, hu,1, lu,1, ku,1, av,1, hv,1, lv,1, kv,1)
u1, v1

2D-ES 2 (ω2, au,2, hu,2, lu,2, ku,2, av,2, hv,2, lv,2, kv,2)
u2, v2

um

vm

2D-ES C (ωC , au,C , hu,C , lu,C , ku,C , av,C , hv,C , lv,C , kv,C)
un, vn

Fig. 1: Parallel operation of multiple 2D-ES controllers.

and rewrite the objective function (14) in terms of new shifted
coordinate and the perturbation signals as (29):

Ψ =
1

2
(µ− µ∗)TB(µ− µ∗) ,

=
1

2
(µ̂+Ar − µ∗)T B (µ̂+Ar − µ∗) ,

=
1

2
(µ̃+Ar)

T
B (µ̃+Ar) ,

=
1

2
µ̃TBµ̃+ rT (t)ATBµ̃+

1

2
rT (t)ATBAr(t) .

(29)

In light of (28), (29) and Fig. 1, the dynamics of the collec-
tion of 2D-ES controllers minimizing (29) can be expressed
as:

ε̇ = H
(

Ψ(µ̃, r(t)) · 1− ε
)
, (30)

ξ̇ = 2A−1Lr(t) ◦ (Ψ(µ̃, r(t)) · 1− ε)−Lξ , (31)
˙̃µ = −Kξ . (32)

Let τ be the lowest common multiple of all probe time
periods in the system, τm = f−1m , in the system such that the
entire system is τ -periodic, τ = γmτm, γm ∈ Z+ \ 0. The
angular frequency of the dither of the mth 2D-BES controller
is: ωm = γmω where ω = 2πτ−1. We introduce the new
timescale of τ = tτ−1 , and rewrite (30) – (32) as:

ε̇ = τH (Ψ(µ̃, r(τ)) · 1− ε) , (33)

ξ̇ = τ
(

2LA−1r(τ) ◦ (Ψ(µ, r(τ)) · 1− ε)−Lξ
)
, (34)

˙̃µ = −τKξ , (35)

where the dot notation on the left-hand side of (33) - (35)
now refers to d/dτ , and all variables are functions of τ . The

system of equations (33) – (35) represent the 2D-ES dynamics
of (30) – (32) in the new timescale over the period τ . This
system is in the form to which averaging is applicable, and
we integrate over the period 0 to τ , to obtain the “averaged”
system dynamics of (36) – (38):

ε̇av = H

((
1

2
µ̃TavBµ̃av +

1

4
Tr
(
ATBA

))
· 1− εav

)
(36)

ξ̇av = L (Bµ̃av − ξav) (37)

˙̃µav = −Kξav , (38)

where in computing (36) - (38), the following relations were
utilized:

rrT =
1

2

[
IC×C + YC×C XC×C

XC×C IC×C +ZC×C

]
, (39)

X(m,n) = sin((γm + γn)ωτ) + sin((γm − γn)ωτ) , (40)
Y (m,m) = cos(2γmωτ) , (41)
Y (m,n) = cos((γm − γn)ωτ) + cos((γm + γn)ωτ) , (42)
Z(m,m) = − cos(2γmωτ) , (43)
Z(m,n) = cos((γm − γn)t)− cos((γm + γn)ωτ) , (44)

for all m,n ∈ {1, . . . , C}. In the system of (36) - (38), the
subscript “av" refers to: 1/T

∫ T
0

(·)dτ and T = τ . The system of
equations (36) – (38) represent the averaged 2D-ES dynamics
of (33) – (35) over the period of τ . Recognizing that (37) -
(38) evolve independently of (36), we proceed in analyzing
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the sub-system consisting of (37) - (38). This sub-system can
be re-organized into the linear system:[

ξ̇av
˙̃µav

]
=

[
−L LB
−K 0

]
︸ ︷︷ ︸

Ω

[
ξav
µav

]
. (45)

In order to prove the average system dynamics of (45) are
stable, consider the following Lyapunov function, (46):

V =
1

2

[
ξav µ̃av

]
P

[
ξav
µ̃av

]
, (46)

where P is positive definite and symmetric. We seek to
find a pair of positive definite matrices (P ,Q) that satisfy
the Lyapunov equation: ΩTP + PΩ = −Q. Consider the
matrices:

P =

[
Λ −L−1
−L−1 K−1 (I + ΛLB)

]
, (47)

Q =

[
LΛ−KL−1 0

0 B

]
, (48)

where Λ � 0 is a diagonal matrix. If Λ � KL−2 � 0, then
it can be shown that P is positive definite and Q is positive
semi-definite (due to the positive semi-definiteness of B). This
implies (45) is stable. To establish asymptotic stability, we note
that V̇ is of the form:

V̇ ≤ −µ̃TavBµ̃av , (49)

which is negative definite outside of the equilibrium set. This
implies that the 2D-ES control scheme will asymptotically
drive µ̃av to the equilibrium set {µ̃av,eq|µ̃Tav,eqBµ̃av,eq = 0}.
Convergence of µ̂ to a region near of µ∗ is then guaranteed
by the averaging process and proper choice of parameters of
the 2D-ES control loops [22], [11].

Returning to (36), which is a vector of the averaged DC
content of the objective function value for each loop in all
2D-ES controllers, we see that εav → 1

4 Tr(ATBA) ·1. This
term is typically negligible as A is diagonal and its elements
consist of the perturbation amplitudes of each 2D-ES loop,
this term is typically negligible as (au,m, av,m) << 1.

E. Role of the PMU

The analysis of Section II-D shows optimizing convex
functions of e, δ, p, or q using the 2D-ES method will result in
convergence to a small neighborhood of the optimum, without
explicit knowledge of the system model. This result makes
the proposed approach applicable to a wide range of potential
objective functions. In this work, we exploit the availability
of voltage phase angle measurements, δ, to enable virtual
islanding based on controlling voltage magnitude and phase
angle alone. It is true that the previous analysis allows for
direct control of p and q, however, in the 2D-ES scheme, this
would require that the active and reactive power flows between
portions of the feeder to be virtually islanded be explicitly
measured. This, in turn, would require the deployment of cur-
rent transformers to capture measurements needed to compute

∞
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735

736
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740

Fig. 2: IEEE 37 Node Test Feeder connected to a transmis-
sion line. Nodes with DER resources managed by a 2D-ES
controller are highlighted in red (702, 725, 732, 735). Nodes
with PV (710, 711) are highlighted in green. The section of
the network to be virtually islanded is enclosed by the blue
dashed line.

power flows. The simulations in the following sections demon-
strate the degree to which the use of distribution phase angle
improves the model-free virtual island process enabled by 2D-
ES, as compared to attempting to virtually island portions of
the network based on voltage magnitude measurements alone.

In order to minimize the voltage phasor difference across
a line segment in a given network, distribution voltage PMUs
must be located on both sides of the line. If it were desired
to regulate the voltage phasor difference at other points of the
network, then distribution voltage PMUs measurements would
need to be available at those locations.

III. SIMULATIONS

A. Virtual Islanding

To investigate the effectiveness of the proposed approach,
we conducted a simulation in which multiple DER, each
controlled by a 2D-ES algorithm, dispatched their active and
reactive power contributions to minimize the difference in
voltage magnitude and voltage angle across a line segment,
while, simultaneously, ensuring voltage magnitudes .

Henceforth, we augment our nomenclature. Single sub-
scripts on variables denote the node of the variable. A subscript
containing two nodes denote the line between the nodes in the
subscript. The superscript φ will refer to an arbitrary phase,
and superscript a, b, and c refer to the specific phase.

We considered a scenario where it is desired to island the
section of the network “downstream” of node 709, enclosed by
the blue dashed line in Fig. 2, and therefore want to minimize
the power on line (709, 708). In the case of a lack of direct
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power measurements on the line, the difference in voltage
magnitude and difference in voltage angle can serve as a proxy
measurement, as the the line power phasor and difference
in voltage phasors are directly related. While not a linear
relationship, driving one to zero is approximately equivalent to
driving the other to zero, and vice-versa. Assuming three phase
measurements of the voltage magnitude and voltage angle at
nodes 709 and 708 are available, one can minimize the line
power by minimizing the difference in voltage magnitude and
difference in voltage angle.

We perform simulations on a modified version of the IEEE
37 node test feeder model, as shown in Fig. 2. Feeder topology,
line configuration, line impedance, line length, and spot loads
are specified in [23]. The voltage regulator between nodes 799
and 701 was omitted. The transformer between nodes 709 and
775, was replaced by a line of configuration 724 (according to
[23], page 5) and length of 50 feet. All loads on both networks
were assumed to be Wye connected and follow a ZIP model
with a time varying element:

dφm (µ, t) = dφm
(
1 + κφm sin

(
2π(τφm)−1t

))
. . .

×
(
AφPQ,m +AφI,me

φ
m (µ) +AφZ,m(eφm (µ))2

)
,

(50)

where dφm is the complex load specified in [23], AφPQ,m =

0.75, AφI,m = 0.1, AφZ,m = 0.15∀φ ∈ {a, b, c}, ∀m ∈
N , κφm ∼ U(−0.2, 0.2), and τφm ∼ U(30, 480) ∀φ ∈
{a, b, c}∀m ∈ N . We placed a PV plant at node 710 that
injects 0.02 p.u. of active power on all three phases, and a
PV plant at node 711 that injects 0.03 p.u. of active power
on all three phases. The transmission line was treated as
an infinite bus, with a fixed voltage reference of V∞ =
[1, 1∠240°, 1∠120°]T p.u.

Single-phase four quadrant capable DER were placed on all
phases at nodes {702, 725, 732, 735}. We assumed each DER
can inject or sink both active power and reactive power on
its respective phase independently of other phases at the same
node. DER were constrained by an apparent power capacity
limit, wm, as listed in Table I. DER were also constrained by
maximum, and minimum, reactive power limits of of 0.8wm,
and −0.8wm, respectively.

DER active power and reactive power dispatch were con-
trolled by individual 2D-ES loops as in Fig. 1. Parameters
for all controllers are listed in Table I. For each 2D-ES
controller, the active power and reactive power probes had
same probe frequency, high-pass filter frequency, low-pass
filter frequency, integrator gain, and probe amplitude, and we
therefore omit the subscript indicating the active power or
reactive probe in Table I and this section. Controller probe
frequency is listed in Table I as fm, with angular frequency
ωm = 2πfm. The cutoff frequency of the high-pass filters
was hu,m = hv,m = hm = ωm/10 and the cutoff frequency
of the low-pass filers was lu,m = lv,m = lm = ωm/10. Probe
frequencies must be unique, fk 6= fl ∀ k, l ∈ C, and non-
additive, fk+fl 6= fm ∀ k, l,m ∈ C. We therefore chose probe
frequencies as f =

√
b/b
√
bc where b is a prime number and

b ≥ 11. This algorithm was effective in producing frequencies,
fm ∈ [1, 1.25], that satisfy the uniqueness and non-additive
conditions for 11 ≤ b ≤ 1000.

TABLE I: ES controller parameters. Subscripts u and v that
denote the active and reactive power channels are omitted as
we assign the same parameters to the active and reactive power
control loops.

Node Phase fm (Hz) am (p.u.) km wm (p.u.)

702
a

√
11/3 0.0025 0.25 0.100

b
√

13/3 0.0025 0.25 0.095
c

√
17/4 0.0025 0.25 0.090

725
a

√
19/4 0.0025 0.25 0.050

b
√

23/4 0.0025 0.25 0.045
c

√
29/5 0.0025 0.25 0.040

732
a

√
31/5 0.0025 0.25 0.070

b
√

37/6 0.0025 0.25 0.080
c

√
41/6 0.0025 0.25 0.075

735
a

√
43/6 0.0025 0.25 0.075

b
√

47/6 0.0025 0.25 0.070
c

√
53/7 0.0025 0.25 0.080

DER setpoints computed by the 2D-ES controllers were
adjusted to ensure the sinusoidal probe plus the setpoint
always remained feasible with respect to DER complex power
constraints (see [24] for a detailed description of this process).

In the simulations, every 2D-ES controller has knowledge
of its own parameters, including the probe frequency, probe
amplitude, high-pass filter cutoff frequency, low-pass filter
cutoff frequency, and integrator gain. Every 2D-ES controller
also receives measurements of the objective function at each
timestep in the simulation. All 2D-ES controller has knowl-
edge of their own internal states, their own complex power
setpoints, and their own complex power dispatch, as shown
in Fig. 1. We assume each 2D-ES controller has knowledge
of DER active power capacity, reactive power capacity, and
apparent power capacity. The 2D-ES controllers have no
knowledge pertaining to the network, other than the objective
function measurements. Finally, the 2D-ES controllers have
no knowledge pertaining to other ES controllers (e.g. the
controllers do not exchange information).

The objective of this experiment was to minimize the
voltage phasor difference across the line between nodes 709
and 708, by minimizing (51):

Ψ (µ) =αe
∑

φ∈{a,b,c}

((
eφ709 (µ)

)2
−
(
eφ708 (µ)

)2)2

. . .

+ αδ
∑

φ∈{a,b,c}

(
δφ709 (µ)− δφ708 (µ)

)2
. . .

+ αemax
∑

m∈N\∞
φ∈{a,b,c}

(
max

(
eφm (µ)− 1.05, 0

))2
. . .

+ αemin
∑

m∈N\∞
φ∈{a,b,c}

(
max

(
0.95− eφm (µ) , 0

))2
,

(51)
where N is the set of all nodes, and coefficients of αe = 105,
αδ = 106, and αemin = αemax = 102 were chosen to scale
each part of the objective function on the order of 1. The
last two lines of (51) represent voltage magnitude regulation
and will enforce proper voltage magnitudes throughout the
simulation.
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Fig. 3: Value of the objective function, defined in (51),
normalized by its value at t = 0.

Fig. 3 plots the objective function over time in both normal
and logarithmic scales, where the objective function has been
normalized by its value at t = 0. It is evident that the objective
function (51) is minimized by the DER dispatch managed by
the 2D-ES controllers.

Fig. 4 plots the voltage magnitude for nodes 709 and 708,
and Fig. 5 plots the per phase voltage magnitude difference
across line (709, 708), with the per phase voltage magnitude
difference defined as eφ709 (µ)− eφ708 (µ).

Fig. 6 plots the voltage angle for nodes 709 and 708, and
Fig. 7 plots the per phase voltage angle difference across
line (709, 708) over time, with the per phase voltage angle
difference defined as:

δφ709 (µ)− δφ708 (µ) =
180◦

π

(
∠V φ709 (µ)− ∠V φ708 (µ)

)
.

Figs. 3 – 6 highlight the effectiveness of ES control in
minimizing both the magnitude and phase angle differences.
The thickness of the lines in these plots show the implication
of the sinusoidal perturbation signals, which are always present
in the system.

Fig. 8a plots the active power on line (709, 708),
Pφ709.708 (µ), Fig. 8b plots the reactive power on line
(709, 708), Qφ709.708 (µ), and Fig. 8c plots the apparent power
on line (709, 708), Sφ709.708 (µ). Fig. 8 clearly demonstrates
that minimizing the voltage phasor difference across a line
minimizes the active and reactive power flow across the line.
The effect of the dither signal is also clearly visible in Fig. 8
as the “average” active power, reactive power, and apparent
power are driven toward zero, however the actual active power,
and reactive power, remain within a neighborhood of the
optimum value.

Fig. 8c plots the total apparent power on line (709, 708).
The apparent power is driven toward zero as the voltage
magnitude and voltage angle are also driven toward zero. The
“average” apparent power decreases from 0.237 p.u. at the
beginning of the simulation to 0.011 p.u. at the end. This
corresponds to a 95% reduction from 590 kVAr to 28 kVAr,
based on the feeder power rating.

Fig. 9, Fig. 10, Fig. 11, and Fig. 12, plot the evolution of the
complex power setpoints and complex power dispatch the 2D-
ES controllers at nodes 702, 725, 732, and 735, respectively.
All 2D-ES controllers have zero initial setpoints and dispatch.
Fig. 12 depicts the saturation of the DER on phase c at node
735, where the control is constrained at times by the maximum

reactive power limit, and at times by the maximum apparent
power limit.

B. Importance of Voltage Angle Control

As a final note, we want to discuss the implications of
being able to control the voltage phase angle for virtual
islanding. We performed a second simulation with two sce-
narios. In the first scenario, the 2D-ES controllers solely
minimize voltage magnitude difference, by minimizing (51)
with αe = 105, αδ = 0, αemin = αemax = 102, without
any constraints on DER. In the second scenario, the 2D-ES
controllers minimize voltage magnitude difference and voltage
angle difference, by minimizing (51) with αe = 105, αδ =
106, αemin = αemax = 102, without any constraints on DER.
The results of these two scenarios are shown in Fig. 13 that
depicts a drastic difference in performance between minimiz-
ing only voltage magnitude difference, and minimizing both
voltage magnitude difference and voltage angle difference, on
line apparent power. The “average” optimal apparent power for
first scenario (no minimization of voltage angle difference) is
0.081 p.u., or 203 kVAr, and the “average” optimal apparent
power at the end of the second scenario (minimization of both
voltage magnitude difference and voltage angle difference) is
0.006 p.u., or 15 kVAr, corresponding to a 92 % reduction in
line apparent power.

IV. CONCLUSIONS

This paper considered the application of two-dimensional
Extremum Seeking (2D-ES) control to manage the active and
reactive power outputs of DER in electric power distribution
systems. Building on earlier work, here we extended the
convergence proof of the 2D-ES scheme to unbalanced (both
meshed and unmeshed) distribution systems. When optimizing
a convex function of distribution grid voltages, phase angles,
active and reactive power line flows, the proof shows conver-
gence of the system to a small neighborhood of the optimizer.
The generality of the proof allows a large variety of different
OPF objective functions to be optimized using the 2D-ES
scheme.

Using the newly derived result, we developed a model-free
optimization approach to virtually island different portions of
a distribution network using 2D-ES driven DER. We argued
that the availability of the voltage phase angle provided by
distribution PMUs allows one to approximatley island portions
of the distribution network without knowledge of the system
model and without having to measure power flows across the
portion of the network to be islanded.

Virtual islanding is a special case of the more general
objective, to drive a voltage phasor at a particular node on
a distribution circuit to a desired value by recruiting DER.
For example, our approach could enable more routine circuit
reconfigurations for reasons of voltage management or loss
minimization. Furthermore, voltage phasors could be used
to control or limit power flow on a specific circuit section,
e.g. to prevent reverse power flow or voltage violations on a
feeder. Our group is investigating these broader use cases and
algorithms for phasor-based control.
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Fig. 4: Voltage magnitude at nodes 709 and 708.
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Fig. 5: Voltage magnitude difference across line (709, 708).
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In a previous work, we studied the stability of ES with
an exponential decay in probe amplitude [24]. Incorporation
of the probe amplitude decay algorithm into this work would
ameliorate the dither in voltage magnitude and voltage angle
difference, and enable such values to remain within tighter
bounds from their optimal values.
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Fig. 9: Node 702 active power and reactive power dispatch. Dashed lines represent DER power dispatch limits for the
corresponding phase.
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Fig. 10: Node 725 active power and reactive power dispatch. Dashed lines represent DER power dispatch limits for the
corresponding phase.
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Fig. 11: Node 732 active power and reactive power dispatch. Dashed lines represent DER power dispatch limits for the
corresponding phase.
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Fig. 12: Node 735 active power and reactive power dispatch. Dashed lines represent DER power dispatch limits for the
corresponding phase.
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Fig. 13: Comparison of line (709, 708) apparent power for
scenario with no angle control (Scenario 1 - Magnitude
Control), and scenario with angle control (Scenario 2 - Phasor
Control).


	Introduction
	Analysis
	Preliminaries
	Mapping from 2D-ES Power Injections to Network States
	Extremum Seeking Overview
	Stability Analysis
	Role of the PMU

	Simulations
	Virtual Islanding
	Importance of Voltage Angle Control

	Conclusions
	References
	Biographies
	Michael D. Sankur
	Roel Dobbe
	Alexandra ``Sascha'' von Meier
	Daniel B. Arnold


