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Abstract—Proliferation of Distributed Energy Resources
(DERs) and Phasor Measurement Units (PMUs) into electric
power distribution grids presents new opportunities for utility
operators to manage distribution systems more effectively. In this
work we formulate an Optimal Power Flow (OPF) approach that
manages DER power injections to minimize the voltage phasor
difference between two nodes on a distribution network with the
goal of enabling efficient network reconfiguration. To accomplish
this, we develop a linear model that relates voltage phase angles
to active and reactive power flows in unbalanced distribution
systems. Used in conjunction with existing linearizations relating
voltage magnitudes to power flows, we formulate an OPF capable
of minimizing the voltage phasor difference between two points
in a network. In simulations, we explore the use of the developed
approach to minimize the phasor difference across switches to
be closed, thereby providing an opportunity to automate and
increase the speed of reconfiguration in unbalanced distribution
grids.

Index Terms—Voltage phasor regulation, Optimal power flow,
Distributed energy resources

I. INTRODUCTION

The Proliferation of phasor measurement units (PMUs) into
electric power distribution system is providing deeper insights
into grid operation, and may serve to better inform the process
of managing distributed energy resources (DERs). Distribution
PMUs provide time-stamped measurements of magnitude and
angle of voltage and current phasors. These devices are
increasingly ubiquitous as standalone units [1], or are being
incorporated into other system components [2]. There is a a
small, but growing, number of control applications [3], [4]
that use phase angle measurements, indicating that sufficient
PMU infrastructure may be in place in future distribution grids
to support control activities with decisions based on feeder
voltage phasor measurements.

The ability to reconfigure distribution feeders and island/re-
connect microgrids are two important applications of future
grids [5], [6]. Distribution PMU data and DER management
may be important tools for enabling fast and safe switching
of circuit elements for the goal of network reconfiguration. To
close a switch, the voltage magnitude difference and voltage
angle difference between both sides should be sufficiently
small to prevent arcing and transient currents. As such, to

This work was supported in part by the U.S. Department of Energy ARPA-
E program (DE-AR0000340), and the Department of Energy Office of Energy
Efficiency and Renewable Energy under Contract No. DE-AC02-05CH11231.

facilitate network reconfiguration, distribution system oper-
ators (DSOs) typically employ backup power injection at
strategic reconfiguration locations to minimize voltage phasor
difference across switches. In the case where a reconfiguration
is planned, DSOs may schedule such actions in advance, and
send mobile generators with back up power to the correct
locations. After an unplanned power outage, it may take
considerable time to deploy engineering staff with backup
power to necessary switching locations.

DERs present an opportunity to facilitate network reconfig-
uration at timescales much faster than with current practices.
With sufficient amount and proper location of DERs, it may
be possible to control the voltage phasor at strategic points
in the network, alleviating the need for ad-hoc deployment of
generation assets for switching.

There is sparse literature on strategies that aim to directly
control the voltage phasor in unbalanced systems in an optimal
power flow (OPF) formulation. Due to the nonlinear nature
of power flow, many OPFs are formulated as quadratically
constrained quadratic programs (QCQPs). A popular method
for analyzing such OPFs is relaxation via semidefinite pro-
gramming (SDP) [7]. It is well documented that relaxation
of OPF problems via SDP often fails to achieve a rank-
one solution [7], [8], [9] for complex networks, or without
altering the original optimization program. Our first efforts
in the area of controlling voltage phasors employed SDP
relaxations of QCQPs. In these efforts, we found little success
in obtaining a rank-one solution when testing with non-simple
radial networks or meshed networks [10].

The difficulties of OPFs formulated as QCQPs and ana-
lyzed as SDPs limit the applicability and practicality of these
approaches. Therefore, we are motivated to create a linear
approximation for power flow that sufficiently captures the
mapping between the entire voltage phasor and power, is suf-
ficiently accurate for control purposes, and can be incorporated
into convex OPF formulations.

To enable a control strategy that can regulate voltage
phasors, in this work we extend a linearized model of three
phase power flow to include a mapping of voltage phase angle
differences into network active and reactive power flows. To
our knowledge, OPF approaches controlling voltage magni-
tude, active and reactive power flows, but not voltage angle,
cannot always effectively minimize voltage phasor difference
across an open switch. This motivates the extension of the
linear mappings which relate voltage magnitude to active and
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NOMENCLATURE

Pn Set of phases that exist at node n
Pmn Set of phases that exist on line (m,n)

V φn Voltage phasor on phase φ at node n
Eφn Squared magnitude of voltage on phase φ at node n
θφn Angle of voltage phasor on phase φ at node n
Zφψmn Impedance of line (m,n) between phases (φ, ψ)
Iφmn Current phasor on phase φ on line (m,n)

Sφmn Phasor of complex power entering node n on phase φ on
line (m,n)

sφn Complex nodal power phasor on phase φ at node n
wφn Controllable complex power dispatch on phase φ at node n
(·)∗ Complex conjugate

reactive power flows [11], [12], [13], to consider the entire
voltage phasor. Our contribution is an extension of these
results to include a linear relation between complex line power
flow and voltage angle difference, in Section II-C.

The specific activity studied herein is an OPF formulation
that minimizes the voltage phasor difference across an open
switch in a distribution system while simultaneously regulating
feeder voltage magnitudes to within acceptable limits. In
driving the voltage phasor difference across a circuit element
to 0, we ensure that when the switch is closed only small
amounts of power will flow across this element reducing the
risk of arcing and instantaneous power flow surges.

The paper is organized as follows: A derivation of a
linearized model of unbalanced power flow that maps voltage
phasor differences into active and reactive power flows is
presented in Section II. Simulation results of an OPF that
incorporates the linearized power flow model to minimize
voltage phasor differences across a line are presented in
Section III. Concluding remarks are provided in Section IV.

II. ANALYSIS

In this section, we derive the linearized mapping between
voltage angle and power flow. Please refer to the nomenclature
table for variable definitions.

A. Preliminaries

Let T = (N ,L) denote a graph representing an unbalanced
distribution feeder, where N is the set of nodes of the feeder
and L is the set of line segments. Nodes are indexed by m and
n, with m, n ∈ N . Let N , {∞, 0, 1, . . . |N |}, where node 0
denotes the substation (feeder head). Immediately upstream of
node 0 is an additional node used to represent the transmission
system, indexed by ∞. We treat node ∞ as an infinite
bus, decoupling interactions in the downstream distribution
system from the rest of the grid. While the substation voltage
may evolve over time, we assume this evolution takes place
independently of DER control actions in T . Lines are indexed
by (m,n), with line (m,n) connecting nodes m and n.

Each node and line segment in T can have up to three
phases, labeled a, b, and c. Phases are referred to by φ ∈
{a, b, c} and ψ ∈ {a, b, c}. We define Pm and Pn as the set
of phases at nodes m and n, respectively, and Pmn as set of
phases of line segment (m,n). If phase φ is present at node
m, then at least one line connected to m must contain phase

φ. If line (m,n) exists, its phases are a subset of the phases
present at both node m and node n, such that (m,n) ∈ L ⇒
Pmn ⊆ Pm ∩ Pn.

The current/voltage relationship for a three phase line
(m,n) between adjacent nodes m and n is captured by
Kirchhoff’s Voltage Law (KVL) in full and vector form (1),
indexed by Pmn:
V amV bm
V cm

 =

V anV bn
V cn

+

Zaamn Zabmn Zacmn
Zbamn Zbbmn Zbcmn
Zcamn Zcbmn Zccmn


IamnIbmn
Icmn



Pmn

,

[Vm = Vn +ZmnImn]Pmn .
(1)

where, Zφψmn = rφψmn+ jx
φψ
mn is the complex impedance of line

(m,n) across phases φ and ψ, Vm =
[
V am, V

b
m, V

c
m

]T
, and

Imn =
[
Iamn, I

b
mn, I

c
mn

]T
.

To index (1) by the set of line phases Pmn the rows
associated with phases ψ /∈ Pmn of (1) are removed,
as are the appropriate columns Zmn and other matri-
ces. To give two examples, if Pmn = {a}, then (1) is
[Vm]{a} ≡ V am = V an + ZaamnI

a
mn, and if Pmn = {a, c} then

(1) is:

[Vm]{a,c} ≡

[
V am
V cm

]
=

[
V an
V cn

]
+

[
Zaamn Zacmn
Zcamn Zccmn

][
Iamn
Icmn

]
.

The reader should note that if φ /∈ Pn (phase φ does not
exist at node n), then all variables associated with phase φ at
node n are 0. If φ /∈ Pmn (i.e. phase φ does not exist on line
segment (m,n)), then all variables associated with phase φ on
line (m,n) are 0.

Throughout this work, we use the symbol ◦ to represent the
Hadamard product of two matrices of the same dimension,
also known as the element-wise product, and the symbol �
to represent Hadamard division between two matrices of the
same dimension.

B. Complex Power

In our model, a voltage dependent complex load sφn is served
on all existing phases at each node except the substation and
node representing the transmission line, defined as:

sφn
(
V φn
)
=
(
βφS,n + βφZ,nE

φ
n

)
dφn + wφn − jcφn , (2)

where dφn is the complex demand, with constant power co-
efficient βφS,n and constant impedance coefficient βφZ,n, with
βφS,n + βφZ,n = 1, wφn = uφn + jvφn is the complex power
available for control (e.g. DER), cφn denotes capacitance, and
Eφn =

∣∣V φn ∣∣2 is the squared voltage magnitude, all for φ ∈ Pn.
We use the common definition of complex power on phase

φ of line (m,n) as Sφmn = V φn (I
φ
mn)

∗. The vector of complex
power phasors at node n for line (m,n) is Smn = Vn ◦ I∗mn.
Complex power balance at a node m is given by (3):∑

l:(l,m)∈L

Slm = sm +
∑

n:(m,n)∈L

Smn +Lmn , (3)

where Smn =
[
Samn, S

b
mn, S

c
mn

]T
, sm =

[
sam, s

b
m, s

c
m

]T
is

the vector of complex loads at node m, and Sφmn = 0, ∀φ /∈
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Pmn and sφm = 0, ∀φ /∈ Pm. Following the analysis in [11]
and [12], we assume the loss term Lmn in (3) is negligible
such that Lmn = [0, 0, 0]

T
, ∀(m,n) ∈ L.

C. Voltage Angle

We now derive a mapping between line power flow and
voltage phasor angle difference on an unbalanced line. We
begin by computing the Hadamard product of the complex
conjugate (non-transposed) of (1) and the vector of voltage
phasors at node n, Vn:

[V ∗m ◦ Vn = V ∗n ◦ Vn +Z∗mnI
∗
mn ◦ Vn]Pmn . (4)

We then substitute for the current vector Imn using the
definition of power, I∗mn = Smn � Vmn:

[V ∗m ◦ Vn = V ∗n ◦ Vn +Z∗mn (Smn � Vn) ◦ Vn]Pmn . (5)

Applying the analysis in [11], [12], we approximate voltages
as balanced, and rearrange terms on the RHS, giving:

[V ∗m ◦ Vn = V ∗n ◦ Vn + (A ◦Z∗mn)Smn]Pmn , (6)

where:

A =

 1 α α2

α2 1 α

α α2 1

 , (7)

α = 1 exp (j2π/3) = 1∠120◦ =
1

2

(
−1 + j

√
3
)
. (8)

We now look at the LHS of (6), and
recognize that the elements of V ∗m ◦ Vn are∣∣V φm∣∣ ∣∣V φn ∣∣ (cos (θφn − θφm)+ j sin

(
θφn − θφm

))
, φ ∈ Pmn.

We therefore take the imaginary component of (6):
 |V am| |V an | sin (θan − θam)∣∣V bm∣∣ ∣∣V bn ∣∣ sin (θbn − θbm)
|V cm| |V cn | sin (θcn − θcm)

 = Im {(A ◦Z∗mn)Smn}


Pmn

.

(9)
To simplify (9), we introduce two assumptions. First, we

assume that the small angle approximation holds, such that
sin
(
θφm − θφn

)
≈ θφm − θφn, ∀φ ∈ Pmn ,∀(m,n) ∈ L. Second,

we assume that
∣∣V φm∣∣ ∣∣V φn ∣∣ ≈ 1, ∀φ ∈ Pmn ,∀(m,n) ∈ L.

Applying these two assumptions and negating (9) gives:

[θm − θn ≈ − Im {(A ◦Z∗mn)Smn}]Pmn , (10)

where θm =
[
θam, θ

b
m, θ

c
m

]T
is the vector of voltage phasor

angles at node m. Finally, we apply the Im operator on the
RHS, and obtain:

[θm ≈ θn −NmnPmn −MmnQmn]Pmn , (11)

[Mmn = Re {A ◦Z∗mn}]Pmn , (12)

[Nmn = Im {A ◦Z∗mn}]Pmn , (13)

where Pmn =
[
P amn, P

b
mn, P

c
mn

]T
is the vector of active

powers on line (m,n), Qmn =
[
Qamn, Q

b
mn, Q

c
mn

]T
is the

vector of reactive powers on line (m,n), Sφmn = Pφmn+jQ
φ
mn,

and Smn = Pmn + jQmn.
We arrive at a linear mapping between voltage pha-

sor angle difference and line complex power flow on line

(m,n). The matrices Mmn and Nmn are modified impedance
matrices, where the off-diagonal elements are rotated by
±120◦ (see (7)). The diagonal entries of Mmn are rφφmn.
Off-diagonal entries of Mmn are 1

2

(
−rφψmn +

√
3xφψmn

)
for

(φ, ψ) ∈ {ab, bc, ca}, and 1
2

(
−rφψmn −

√
3xφψmn

)
for (φ, ψ) ∈

{ac, ba, cb}. The diagonal entries of Nmn are −xφφmn. Off-
diagonal entries of Nmn are 1

2

(
xφψmn +

√
3rφψmn

)
for (φ, ψ) ∈

{ab, bc, ca}, and 1
2

(
xφψmn −

√
3rφψmn

)
for (φ, ψ) ∈ {ac, ba, cb}.

D. Voltage Magnitude

The mapping between squared voltage magnitude and com-
plex power flow on a line is derived in [11] and [12]. For
completeness, we present this mapping in our notation:

[Em ≈ En + 2MmnPmn − 2NmnQmn]Pmn , (14)

where Em =
[
Eam , E

b
m , E

c
m

]T
is a vector of squared voltage

magnitudes at node m.

E. Linearized Unbalanced Power Flow Model

We now present the full set of equations that comprise a
linearized model for unbalanced power flow.

Per phase node complex load
∀φ ∈ Pm, ∀m ∈ N \ {∞, 0}

sφm
(
Eφm
)
=
(
βφS,m + βφZ,mE

φ
m

)
dφm + wφm − jcφm (15)

Node complex power balance
∀m ∈ N∑

l:(l,m)∈L

Slm ≈ sm +
∑

n:(m,n)∈L

Smn (16)

Magnitude and angle equations for lines
∀(m,n) ∈ L

[Em ≈ En + 2MmnPmn − 2NmnQmn]Pmn (17)

[θm ≈ θn −NmnPmn −MmnQmn]Pmn (18)

[Mmn = Re {A ◦Z∗mn}]Pmn (19)

[Nmn = Im {A ◦Z∗mn}]Pmn (20)

A =

 1 α α2

α2 1 α

α α2 1

 (21)

α = 1 exp (j2π/3) = 1∠120◦ =
1

2

(
−1 + j

√
3
)

(22)

III. PHASOR TRACKING FOR SWITCHING OPERATIONS

We now present an experiment in which the complete
linearized unbalanced power flow model, (15) – (21), is
incorporated into an OPF with the objective of minimizing the
phasor difference between nodes at the ends of one or more
open switches (we will refer to this as phasor tracking), while
regulating system voltage magnitudes to within acceptable
limits. The OPF decision variables were DER active and
reactive power injections at select nodes, and were capacity
constrained.
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Fig. 1: Networks T1 and T2 connected to the same transmission line,
with two open switches between them. Nodes with DER resources
are highlighted in red for T1 and blue for T2.

The scenario we discuss is the reconfiguration of distribu-
tion networks through switching actions. We do not consider
economic activity or optimization in these experiments, rather
we assume that DER dispatch for economic purposes is
suspended in order to devote said resources to reconfiguration
efforts.

Our experiment considered two switching actions that each
add a link between two distribution networks. Networks T1
and T2, are connected to the same transmission line as shown
in Fig. 1. The overall network is T = (N , E) with N = N1∪
N2 ∪∞ and E = E1 ∪ E2 ∪ (∞, 1799) ∪ (∞, 2799). Both T1
and T2 were modified versions of the IEEE 37 node test feeder
model. Feeder topology, line configuration, line impedance,
line length, and spot loads are specified in [14]. For clarity,
we add the number 1 to the front of nodes within N1 and the
number 2 for nodes within N2 (e.g. node 799 of N1 is now
1799 and node 775 of N2 is now 2775). The transmission line
was treated as an infinite bus, with a fixed voltage reference
of V∞ = [1, 1∠240◦, 1∠120◦]T p.u. The transmission line
is connected to node 1799 of N1 (node 799 in [14]) and 2799
of N2 (node 799 in [14]).

The voltage regulators between nodes 1799 and 1701,
and between nodes 2799 and 2701, were both omitted. The
transformers between nodes 1709 and 1775, and between 1709
and 1775, were both replaced by a line of configuration 724
(according to [14], page 5) and length of 50 feet. All loads
were assumed to be Wye connected on the phase specified
in [14]. For both networks, the voltage dependent load model
of (2) had parameters βφS,n = 0.85 and βφZ,n = 0.15 ∀φ ∈
Pn, ∀n ∈ N . To create a load imbalance between the two
networks, we multiplied all loads in T1 by a factor of 1.5, and
all loads in T2 by a factor of 1.75.

An open switch was placed between node 1731 of N1 and
node 2731 of N2, on a line with configuration 722 and length

of 3840 feet. A second open switch was placed between node
1725 of N1 and node 2725 of N2, on a line with configuration
722 and length of 3840 feet.

Four quadrant capable DER were placed
on all existing phases at nodes G1 =
{1702, 1704, 1724, 1729, 1732, 1735, 1737, 1711} and
G2 = {2702, 2704, 2724, 2729, 2735, 2737, 2711}, with
G = G1 ∪ G2. We assumed each DER can inject or
sink both active and reactive power separately on each
phase of the feeder and are only constrained by an
apparent power capacity limit on each phase of 0.05
p.u., such that wφn = 0.05, ∀φ ∈ Pn,∀n ∈ G and
wφn = wφn = 0 ∀φ ∈ Pn,∀n /∈ G.

In this experiment, our objective was to close the two open
switches sequentially, so as to connect T1 and T2 on two
tie lines. We designed the OPF (23) to manage DER in for
this purpose. Our experiment consisted our four steps. First,
DER was dispatched according to (23), with k1 = 1731
and k2 = 2731 to minimize the phasor difference between
nodes 1731 and 2731. Second, the switch between nodes 1731
and 2731 was closed, forming line (1731, 2731), such that
E ← E ∪ (1731, 2731). Third, DER was dispatched according
to (23), with k1 = 1725 and k2 = 2725 to minimize the
phasor difference between nodes 1725 and 2725. Fourth, the
switch between nodes 1725 and 2725 was closed, forming
line (1725, 2725), such that E ← E ∪ (1725, 2725). The reader
should note that after the first switch is closed, the aggregate
network is no longer radial, and SDP approaches may have
difficulty in optimizing this meshed network [9].

minimize
uφn,v

φ
n,E

φ
n

θφn,P
φ
mn,Q

φ
mn

ρECE + ρθCθ + ρwCw

subject to (15)− (22) ,

E ≤ Eφn ≤ E ∀φ ∈ Pn, ∀n ∈ N ,

E∞ = [1, 1, 1]
T
,

θ∞ = [0, −2π/3, 2π/3]T ,∣∣wφn∣∣ ≤ wφn ∀φ ∈ Pn, ∀n ∈ G ,
CE =

∑
φ∈Pk1,k2

(
Eφk1 − E

φ
k2

)2
,

Cθ =
∑

φ∈Pk1,k2

(
θφk1 − θ

φ
k2

)2
,

Cw =
∑
n∈G

∑
φ∈Pn

∣∣wφn∣∣2 .

(23)

For both switching actions, we consider two cases. In the
“No Control” (NC) Case, all DER dispatch is 0. In the “Phasor
Control” (PC) Case for the both switching actions, the optimal
DER dispatch is given by (23) with ρE = 1000, ρθ = 1000,
and ρw = 1.

Table I clearly shows the voltage phasor difference between
nodes 1731 and 2731 is minimized in both switching actions.
Table I also demonstrates that the power flow across the closed
switch (steady state power flow across the line with DER
dispatch from (23)) is orders of magnitude smaller than the
NC case.
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TABLE I: SIMULATION RESULTS FOR FIRST AND SECOND SWITCHING ACTIONS.

First Switching Action
k1 = 1731, k2 = 2731

Second Switching Action
k1 = 1725, k2 = 2725

Phase φ No Control Phasor Control No Control Phasor Control

Node k1 Voltage Phasor [p.u.]

V φk1

a 0.9784∠−0.5147◦ 0.9765∠−0.5587◦ 0.9882∠−0.3003◦ 0.9872∠−0.3257◦
b 0.9909∠−120.3949◦ 0.9901∠−120.4279◦ 0.9882∠−120.2812◦ 0.9833∠−120.3048◦
c 0.9749∠119.4164◦ 0.9727∠119.3669◦ 0.9882∠119.3006◦ 0.9787∠119.2415◦

Node k2 Voltage Phasor [p.u.]

V φk2

a 0.9747∠−0.6021◦ 0.9765∠−0.5580◦ 0.9861∠−0.3508◦ 0.9871∠−0.3255◦
b 0.9893∠−120.4620◦ 0.9901∠−120.4290◦ 0.9861∠−120.3289◦ 0.9832∠−120.3052◦
c 0.9706∠119.3172◦ 0.9727∠119.3669◦ 0.9861∠119.1815◦ 0.9786∠119.2407◦

Voltage Magnitude Difference [p.u.]∣∣∣V φk1 ∣∣∣− ∣∣∣V φk2 ∣∣∣
a 0.0037 0.0000 0.0020 0.0001
b 0.0015 0.0000 0.0026 0.0000
c 0.0043 0.0000 0.0033 0.0000

Voltage Angle Difference [◦]

θφk1
− θφk2

a 0.0874 -0.0007 0.0505 -0.0002
b 0.0671 0.0011 0.0477 0.0004
c 0.0991 -0.0000 0.1190 0.0009

Steady State Line Power Power [p.u.]

Sφk1,k2

a 0.0852 + j0.0348 0.0005 + j0.0005 0.0581 + j0.0252 0.0013 + j0.0011
b 0.0673 + j0.0221 0.0010 + j0.0004 0.0808 + j0.0316 0.0008 + j0.0008
c 0.1100 + j0.0442 0.0001 + j0.0005 0.0867 + j0.0280 0.0009 + j0.0006

IV. CONCLUSION

In this work, we extended a linear model of unbalanced
distribution power flow to include a linear mapping between
complex power flow on a line, and the voltage phasor angle
at each end of the line. This extended model allows the
formulation of OPF problems that manage the entire voltage
phasor, rather than only voltage magnitude. The model is
designed to be incorporated into convex optimal power flow
problems, with the intention of enabling better switching in
distribution networks. The complete linear model is presented
in Section II-E.

In Section III, we formulated an OPF to manage DER to
minimize the voltage phasor difference across an open (or
closed) switch. Simulation results demonstrate the effective-
ness of the OPF in minimizing voltage phasor difference
between two disconnected points in a radial and meshed
network.

Future efforts in this area will include investigations into
sequential quadratic programming (SQP) to improve model
accuracy. Finally, we recognize that it may be difficult to solve
a centralized OPF of this type in an on-line fashion due to lack
of proper network models, real-time load information, and a
robust communications system. Therefore, we have explored
alternate approaches to solving centralized OPFs using model-
free and low communication optimization techniques in our
other works [15], [16], [17].
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