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Abstract— Extremum Seeking is a black box optimization/-
control technique that utilizes perturbations to system inputs in
order to optimize outputs. In this work, we propose an extension
to the family of Extremum Seeking for model-free optimization
of convex functions over a discrete action space. We refer to this
method as Discrete Action Extremum Seeking (DA-ES). In this
setting the DA-ES controller perturbs system inputs by visiting
neighboring discrete actions, and then estimates a gradient from
the resulting output signal. The DA-ES then uses the gradient
estimate to select the best action to optimize the objective (e.g.
the system output), and the perturbation process repeats. In this
paper we outline the DA-ES algorithm, and derive convergence
criteria for local minimizers of convex functions. Simulation
results demonstrate the effectiveness of DA-ES in optimizing
convex functions over a space of discrete actions.

I. INTRODUCTION

Extremum Seeking (ES) is a model-free adaptive control
technique which has gained popularity as a tool for black-
box optimization. The scheme utilizes periodic or stochastic
perturbations in system input channels to optimize system
outputs [1], [2]. Unlike many meta-heurestic approaches
(e.g., Particle Swarm Optimization [3]), that utilize a mul-
titude of searchers who coordinate to optimize a given
objective, ES employs a single searcher whose past actions
are used to determine new search directions.

While it is common to use ES to optimize convex functions
over continuously defined decision variables, little attention
has been paid to the use of the technique to optimize discrete
or integer-based convex mathematical programs. For these
types of problems, the objective function and constraints are
convex but the decision variables are discrete in nature.

Several works in literature have investigated discrete-time
ES, ES with discrete or discontinuous perturbations and
continuous action spaces, and online discrete optimization.
In [4], the authors analyze the stability of discrete-time
ES with dynamic plant, where the setpoint and control
values are continuous values. The authors of [5] analyze the
convergence properties of ES algorithms with perturbations
that are discontinuous in time, such as square waves, triangle
waves, or sawtooth waves. The setpoint and control may both
take any value on a continuous number line, and thus the
action space is not discrete.

The authors of [6] investigate the stability of Extremum
Seeking with a variable dither amplitude that varies with
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the objective function value. However, all of these works
consider ES where the setpoint and control may take any
value within a continuous space. The authors of [7] propose
online (real-time) reinforcement learning to develop opti-
mal control policies for unknown discrete-time linear state-
space models. The major limitations with the aforementioned
works is the use of a continuously defined perturbation
signal (e.g., a sin(ωt), where a is the perturbation amplitude)
which cannot be employed to search a discrete action space.
This limitation prevents ES from being used to optimize
mixed continuous and discrete (or integer-based) convex
mathematical programs.

Previously, we have applied Extremum Seeking to opti-
mize active and reactive power injections of Distributed En-
ergy Resources (e.g., solar photovoltaic generation systems)
in unbalanced electric distribution networks [8], [9]. The use
of continuously defined perturbation signals prevented the
use of ES to co-optimize both DER power contributions and
voltage regulator tap positions (which are integer in nature).

To address the gap in literature examining the use of ES to
optimize discrete or integer-based convex mathematical pro-
grams we propose an extension of the theory of Extremum
Seeking to enable perturbations over a discrete action space,
whereby both the setpoint and control of an ES algorithm
may only take values from a uniformly spaced discrete set
in order to optimize an unknown (convex) objective function.
We refere to this scheme as Discrete Action Extremum
Seeking (DA-ES). To our knowledge, this is the first work
examining this problem.

II. DA-ES OVER A MULTIDIMENSIONAL DISCRETE
ACTION SPACE

This section presents the DA-ES algorithm, in which a
single DA-ES algorithm operates to minimize an objective
function with D decision variables. It is assumed that the ac-
tion space along each dimension are independently uniform
in each dimension (i.e., the discrete action step size for a
single dimension is constant, but other dimensions may have
different discrete action step sizes).

In this work, scalar values are given with the associated
dimension of the DA-ES, and are denoted by the subscript
m ∈ {1, . . . , D}. Vectors and matrices are denoted by bold
typeface. Vectors are of dimension D × 1, matrices are of
dimension D × D. The first entry in a double subscript
denotes the DA-ES dimension. The second entry denotes the
timestep k, or batch period (BP) b. The symbol ◦ denotes
Hadamard (index-wise) multiplication, � denotes Hadamard
(index-wise) division, 1 ∈ RD denotes a D × 1 vector with
all entries being 1, and 0 ∈ RD denotes a D×1 vector with
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Fig. 1: Multidimensional Discrete Action Extremum Seeking
algorithm with static mapping between input and objective
function. The gray dashed box is the DA-ES algorithm. The
red box indicates the system perturbation (probing), and the
blue box encircles the demodulation, gradient estimation, and
setpoint update processes that happens at the end of batch
periods.

Algorithm 1 Multidimensional DA-ES Algorithm, as shown
in Fig. 1.

loop
while in batch period b: nb ≤ k ≤ nb do

- Hold setpoint constant as in (1):
θ̂k = θ̂b, k ∈ {nb, . . . , nb}

- Add perturbation to setpoint as in (3):
θk = θ̂b +Ask

- Record and store objective function values:
ψk = ψ(kTs)

end while
if at end of batch period: k = nb then

- Demodulate objective function values with (7):
σk = A−1sk ◦ ψk1, k ∈ {nb, . . . , nb}

- Estimate averaged gradient for b with (8):
ξ̂b = AGE (σk) , k ∈ {nb, . . . , nb}

- Update setpoint for b+ 1 batch period with (10):
θ̂b+1 = θ̂b −A sign

(
ξ̂b

)
- Increase batch period index:
b← b+ 1

end if
end loop

all entries being 0. The sign operator applied to vector x is
sign (x) =

[
sign(x1), sign(x2), . . . , sign(xn)

]T
.

A. DA-ES Operation

The DA-ES algorithm is designed to minimize the value
of an unknown objective function over a discrete action
space that is uniform in each dimension. The DA-ES al-
gorithm operates in discrete-time, with timesteps of length
Ts, and indexed by k. The DA-ES operates over dis-
tinct batch periods (BPs), indexed by b, and consisting of
timesteps k ∈ {nb, . . . , nb}. System perturbation (probing)

and recording objective function measurements values hap-
pen at every timestep k, as shown in red in Fig. 1. At the
end of each BP b, when k = nb, the DA-ES demodulates
the objective function values for BP b, computes an averaged
gradient estimate for BP b, then updates its setpoint for BP
b+ 1, as shown in blue in Fig. 1. Algorithm 1 outlines this
operation.

We begin the discussion of DA-ES operation with by
introducing pertinent variables. A local minimizer is denoted
by θ∗ =

[
θ∗1 , θ∗2 , . . . , θ∗D

]T ∈ RD. The setpoint at
timestep k is θ̂k =

[
θ̂1,k, θ̂2,k, . . . , θ̂D,k

]T ∈ RD,
and the setpoint over BP b is
θ̂b =

[
θ̂1,b, θ̂2,b, . . . , θ̂D,b

]T ∈ RD. The control at
timestep k is θk =

[
θ1,k, θ2,k, . . . , θD,k

]T ∈ RD. A
diagonal matrix with the discrete step sizes on its diagonal is
defined by A = diag

([
a1, a2, . . . , aD

]T) ∈ RD×D,
with am > 0, ∀m ∈ {1, . . . , D}. The perturbation logic at
timestep k is sk =

[
s1,k, s2,k, . . . , sD,k

]T ∈ ZD, with
sm,k ∈ Z, ∀m ∈ {1, . . . , D} , ∀k.

The DA-ES optimizes its setpoint θ̂b ∈ RD to
minimize the value of an unknown objective function
ψk (θk) , ψ : RD → R, as shown in Fig. 1, and outlined in
Algorithm 1. We assume the mapping between the system
input θk (output of the DA-ES) and objective function value
ψk is C2 and strictly convex within a neighborhood around
any local minimizer.

DA-ES operation is as follows. The DA-ES holds its
setpoint constant over any BP, indexed by b:

θ̂m,k = θ̂m,b, m ∈ {1, . . . , D} , k ∈ {nb, . . . , nb} ,
θ̂k = θ̂b, k ∈ {nb, . . . , nb} .

(1)

At every timestep k, The DA-ES adds perturbation Ask to
its setpoint, forming the input to the system θk:

θm,k = θ̂m,k + amsm,k, m ∈ {1, . . . , D} ,
θk = θ̂k +Ask.

(2)

With (1) and (2), we rewrite the input to the system in terms
of the setpoint for BP b, and the perturbation at timestep k:

θm,k = θ̂m,b + amsm,k, m ∈ {1, . . . , D} ,
θk = θ̂b +Ask.

(3)

The perturbation logic satisfies the following conditions,
which we derive in Section II-B:

sm,k ∈ Z, ∀m ∈ {1, . . . , D} , ∀k, (4a)
nb∑
k=nb

sm,k = 0, ∀m ∈ {1, . . . , D} , (4b)

nb∑
k=nb

sl,ksm,k = 0, ∀l 6= m ∈ {1, . . . , D} , (4c)

nb∑
k=nb

sm,ksm,k 6= 0, ∀m ∈ {1, . . . , D} , (4d)



nb∑
k=nb

sl,ksm,ksn,k = 0, ∀l,m, n ∈ {1, . . . , D} . (4e)

With appropriate choice of fm, two examples of perturbation
logic that satisfy (4) are a simple square wave:

sm,k = sign (sin (2πfmkTs)) , m ∈ {1, . . . , D} , (5)

and a modified square wave:

sm,k =


1 if 2πfmkTs (mod 2π) ∈

[
0, π2

)
0 if 2πfmkTs (mod 2π) ∈

[
π
2 , π

)
−1 if 2πfmkTs (mod 2π) ∈

[
π, 3π2

)
0 if 2πfmkTs (mod 2π) ∈

[
3π
2 , 2π

)
.

(6)

The DA-ES records objective function measurements, de-
noted as ψk.

At the end of BP b, the DA-ES demodulates the ob-
jective function measurements with its perturbation, giving
σk =

[
σ1,k, σ2,k, . . . , σD,k

]T ∈ RD:

σm,k = a−1
m sm,kψk, m ∈ {1, . . . , D} , k ∈ {nb, . . . , nb} ,

σk = A−1sk ◦ ψk1, k ∈ {nb, . . . , nb} .
(7)

The DA-ES averages the demodulated signal over
BP b to obtain the averaged gradient estimate (AGE)
ξ̂b =

[
ξ̂1,b, ξ̂2,b, . . . , ξ̂D,b

]T ∈ RD with the AGE oper-
ator, such that ξ̂m,b = AGE (σm,k) , k ∈ {nb, . . . , nb}, and
ξ̂b = AGE (σk) , k ∈ {nb, . . . , nb}. The AGE operator is
defined in (8):

ξ̂m,b = Γm,b

nb∑
k=nb

σm,k, m ∈ {1, . . . , D} ,

= Γm,b

nb∑
k=nb

a−1
m sm,kψk, m ∈ {1, . . . , D} ,

ξ̂b = Γb ◦
nb∑
k=nb

σk = Γb ◦
nb∑
k=nb

A−1sk ◦ ψk1,

(8)

where Γm,b and Γb =
[
Γ1,b, Γ2,b, . . . , ΓD,b

]T ∈ RD
remove the multiplicative scaling that otherwise comes from
summing the demodulated value over BP b, and are defined
by (9):

Γm,b =

 nb∑
k=nb

s2m,k

−1

, Γb = 1�
nb∑
k=nb

sk ◦ sk. (9)

The entries of ξ̂b, ξ̂m,b, are the averaged gradient estimate of
the objective function with respect to the respective setpoint
entry of θ̂b, θ̂m,b

The DA-ES updates its setpoint entries based on the sign
of the entries of the averaged gradient estimate and each
dimension’s respective discrete step size as in (10):

θ̂m,b+1 = θ̂m,b − am sign
(
ξ̂m,b

)
, m ∈ {1, . . . , D} ,

θ̂b+1 = θ̂b −A sign
(
ξ̂b

)
,

(10)

where the sign operator applied to ξ̂b is defined as
sign

(
ξ̂b

)
=
[
sign(ξ̂1,b), sign(ξ̂2,b), . . . , sign(ξ̂D,b)

]T
.

The DA-ES then progresses to the next BP, and this process
repeats.

B. Derivation of DA-ES Perturbation Logic

We now derive the properties of the ES probing logic as
defined in (4). We start with a second order Taylor Expansion
of the objective function at the setpoint θ̂b, and neglect higher
order terms:

ψ (θk) ≈ ψ
(
θ̂b

)
+∇θψ

(
θ̂b

)(
θk − θ̂b

)
+

1

2

(
θk − θ̂b

)T
∇2
θψ
(
θ̂b

)(
θk − θ̂b

)
,

(11)

and (3) rewrite the difference between control and setpoint:

ψ (θk) ≈ ψ
(
θ̂b

)
+∇θψ

(
θ̂b

)
Ask

+
1

2
sTkA

T∇2
θψ
(
θ̂b

)
Ask.

(12)

From (8) and (12), the averaged gradient estimate is:

ξ̂b ≈ Γb ◦
nb∑
k=nb

A−1sk ◦ [ψ
(
θ̂b

)
+∇θψ

(
θ̂b

)
Ask

+
1

2
sTkA

T∇2
θψ
(
θ̂b

)
Ask

]
1.

(13)
We seek to eliminate the constant and second order terms

from the AGE and solely estimate the gradient, and therefore
design sk according to (4). Applying (4b) to (13) gives:

Γb ◦
nb∑
k=nb

A−1sk ◦ ψ
(
θ̂b

)
1 = 0. (14)

Applying (4c) and (4d) to (13) gives:

Γb ◦
nb∑
k=nb

A−1sk ◦ sTkAT∇Tθψ
(
θ̂b

)
1 = ∇Tθψ

(
θ̂b

)
.

(15)
Applying (4e) to (13) gives:

Γb ◦
nb∑
k=nb

A−1sk ◦
1

2
sTkA

T∇2
θψ
(
θ̂b

)
Ask1 = 0. (16)

Therefore, with the properties of the perturbation logic sk
given by (4), the AGE solely estimates the gradient, as in
(17):

ξ̂b ≈ ∇Tθψ
(
θ̂b

)
. (17)

C. DA-ES Stability and Convergence Properties

We now examine the stability and convergence properties
of DA-ES. First, we introduce the error coordinate θ̃b ∈ RD,
defined by:

θ̃b = θ̂b − θ∗. (18)



As the objective function is C2 and locally convex in
a neighborhood around any local minimizer θ∗, it can be
approximated by a second order Taylor Expansion:

ψ (θk) ≈ψ (θ∗) +∇θψ (θ∗) (θk − θ∗)

+
1

2
(θk − θ∗)

T ∇2
θψ (θ∗) (θk − θ∗) .

(19)

By definition, the gradient at θ∗ is the zero vector,
∇θψ (θ∗) = 0. We rewrite the Hessian of the objective
function evaluated at θ∗ as Q = ∇2

θψ (θ∗) � 0. Eliminating
the gradient and rewriting the Hessian as Q, (19) becomes:
(20):

ψk ≈ ψ (θ∗) +
1

2
(θk − θ∗)

T
Q (θk − θ∗) . (20)

With (3) and (18), we rewrite ψk in terms of the setpoint
error for BP b and the perturbation Ask:

ψk ≈ ψ (θ∗) +
1

2

(
θ̃b +Ask

)T
Q
(
θ̃b +Ask

)
, (21)

and expand (21):

ψk ≈ ψ (θ∗) . . .

+
1

2

(
θ̃Tb Qθ̃b + 2sTkA

TQθ̃b + sTkA
TQAsk

)
.

(22)
With (8) and (22), the averaged gradient estimate over BP

b is:

ξ̂b ≈ Γb ◦
nb∑
k=nb

A−1sk ◦
[
ψ (θ∗) +

1

2

(
θ̃Tb Qθ̃b . . .

+2sTkA
TQθ̃b + sTkA

TQAsk

)]
1.

(23)

For clarity of presentation, we examine three parts of AGE
separately. From (4b) and (23), the first part of the AGE is:

Γb ◦
nb∑
k=nb

A−1sk ◦
(
ψ (θ∗) +

1

2
θ̃Tb Qθ̃b

)
1 = 0. (24)

From (4c), (4d), and (23), the second part of the AGE is:

Γb ◦
nb∑
k=nb

A−1sk ◦ sTkATQθ̃b1 = Qθ̃b. (25)

From (4e), and (23), the third portion of the AGE is:

Γb ◦
nb∑
k=nb

A−1sk ◦
1

2
sTkA

TQAsk1 = 0. (26)

Therefore, from (24) – (26), the AGE for BP b is:

ξ̂b ≈ Qθ̃b, (27)

which is the actual gradient of the objective function with
respect to θ̂.

The setpoint update process considers the sign of the
entries of the gradient estimate, and is defined by:

θ̂b+1 = θ̂b −A sign
(
ξ̂b

)
. (28)

Subtracting θ∗ from both sides, and with (18) and (27), we
rewrite (28) in terms of the error coordinate:

θ̃b+1 ≈ θ̃b −A sign
(
Qθ̃b

)
. (29)

To evaluate the stability and convergence properties of
the setpoint update process, we design the Lyapunov Func-
tion Vb = θ̃Tb A

−1θ̃b, and examine when Vb+1 ≤ Vb. Setting
Vb+1 ≤ Vb, and subtracting θ̃Tb A

−1θ̃b from both sides, gives:

sign
(
Qθ̃b

)T
A sign

(
Qθ̃b

)
≤ 2θ̃Tb sign

(
Qθ̃b

)
(30)

As the entries of sign
(
Qθ̃b

)
∈ {−1, 0, 1}, we can simplify

this condition using the L1 norm:

1

2

∥∥∥A sign
(
Qθ̃b

)∥∥∥
1
≤ θ̃Tb sign

(
Qθ̃b

)
. (31)

We define Ω ⊂ RD as the region containing all possible
values of θ̂ to which values of θ̂ /∈ Ω will converge toward,
defined in (32).

Ω =

{
θ̂

∣∣∣∣12 ∥∥∥A sign
(
Qθ̃
)∥∥∥

1
> θ̃T sign

(
Qθ̃
)}

. (32)

For a one-dimensional DA-ES, (32) simplifies to
Ω =

{
θ̂
∣∣∣ 12a > ∣∣∣θ̃∣∣∣}.

The preceding analysis shows that DA-ES will converge
to a feasible point within Ω. At this the feasible point in Ω,
(32) will no longer be satisfied, and the setpoint will exit Ω
to a feasible point outside Ω.

Fig. 2 further explains the preceding analysis, using the the
two-dimensional DA-ES of the experiment in Section III-
C as an example. The setpoint will move toward Ω, and
eventually move to a point in Ω. However the setpoint update
for any point in Ω will move to a feasible value of θ̂ outside
Ω. The next setpoint update will return the setpoint to the
previous feasible point within Ω. This can be seen by the
black arrows in Fig. 2, which point to the point the value of
θ̂ the setpoint update will take.

The convergence rate of the DA-ES algorithm depends on
the setpoint update step size, and the length of each BP.

D. Heuristic for Stopping DA-ES Setpoint Update

From the previous analysis, we develop a heuristic for
stopping the probing and setpoint update process. If the
gradient estimate is nonzero, and each element of the gradi-
ent estimate switches signs over the course of successive
BPs, then the setpoint is assumed to oscillate between a
point within Ω, and one outside. Therefore, if the gradient
estimate is nonzero and switches signs over the course of
Ns successive BPs, satisfying (33), and the average objective
function, defined by (34), for the current BP b is less than the
previous BP, then probing or setpoint update can be stopped.

sign
(
ξ̂b−n

)
= − sign

(
ξ̂b−n−1

)
, n ∈ {0, 1, . . . , Ns} ,

sign
(
ξ̂b−n

)
6= 0, n ∈ {0, 1, . . . , Ns} ,

ψb ≤ ψb−1.
(33)
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Fig. 2: Green represents Ω as defined by (32). The white dot
is the minimizer, blue dots are feasible values of θ̂ outside Ω,
and gold dots are feasible values of θ̂ inside Ω. Red arrows
plot the AGE, ξ̂, at θ̂. Black arrows point in the direction of
the setpoint update at values of θ̂, defined by −A sign

(
ξ̂
)

.

ψb =
1

nb − nb

nb∑
k=nb

ψk (34)

E. DA-ES with Decreasing Probe Amplitude and Setpoint
Update Step Size

We now consider an extension to DA-ES where the
perturbation amplitude and setpoint update size decreases if
the setpoint oscillates around the optimal value, and after
sign of the gradient switches over several successive BPs.

Extensions similar to this have been considered in previous
work. In [10], the authors propose a modification to ES
in which the ES probe amplitude is proportional to the
norm of system states. As the ES drives the system to an
equilibrium point, the probe amplitude decreases, and for
certain cases decreases to zero. In our previous work [11],
the probe amplitude is dependent on the magnitude of the
gradient estimate. Conversely, in this extension, the probe
amplitude and setpoint update size are based on the sign of
the gradient over successive batch periods, and the previous
probe amplitude and setpoint update size. This extension
enables the DA-ES to evaluate and traverse regions of the
discrete action space faster, and over fewer BPs.

As an illustrative example, imagine a system operator can
turn three knobs whose values sum to the setpoint, to find the
optimal setpoint over the set of integers. The first knob moves
in increments of 100, the second knob moves in increments
of 10, and the third knob moves in increments of 1. First the
operator finds the optimal position of the first knob, which
is the closest multiple of 100 to the optimal value. Next, the
operator finds the optimal position of the second knob, which
is the closest multiple of 10 to the optimal value. Lastly, the
operator finds the optimal position of the third knob, which
is the closest multiple of 1 to the optimal value.

For this extension, we first modify (3) with the
positive integer κm,b ∈ Z+, and diagonal matrix
κb = diag

([
κ1,b, κ2,b, . . . , κD,b

]T) ∈ ZD×D,+, such
that the mth perturbation takes κm,b steps of size am when
|sm,k| = 1:

θm,k = θ̂m,b + amκm,bsm,k, m ∈ {1, . . . , D} ,
θk = θ̂b +Aκbsk.

(35)

Demodulation of the objective function is modified as:

σm,k = (amκb)
−1
sm,kψk, . . .

m ∈ {1, . . . , D} , k ∈ {nb, . . . , nb} ,
σk = (Aκb)

−1
sk ◦ ψk1, k ∈ {nb, . . . , nb} .

(36)

We also modify (10) with the parameters κb and κb, such
that the setpoint update is for dimension m is κm,b+1 steps
of size am:

θ̂m,b+1 = θ̂m,b − amκm,b+1 sign
(
ξ̂m,b

)
, m ∈ {1, . . . , D} ,

θ̂b+1 = θ̂b −Aκb+1 sign
(
ξ̂b

)
(37)

We use the heuristic proposed in Section II-D to de-
termine when to decrease κm,b. If (33) is not satisfied
then κb+1 = κb. When (33) is satisfied for Ns ≥ 1,
then the setpoint update size and number of discrete probe
steps are decreased for one or more dimension of DA-ES,
such that κm,b+1 ≤ κm,b, κm,b+1 ∈ Z+, m ∈ {1, . . . D},
and κb+1 ∈ ZD×D,+.With slight modification of the analysis
from Section II-C, the stability of this extension to DA-ES
is simple to demonstrate.

III. SIMULATIONS

In this section, we present simulations in which a DA-ES
optimizes its setpoint to minimize the value of an objective
function.

A. DA-ES Over a Single Dimension

In our first experiment, a DA-ES optimized its setpoint to
minimize the value of an unknown objective function, over
the discrete set of non-negative integers, such that a = 1. As
this DA-ES operates over a single dimension, we drop the
subscript denoting the dimension. The sampling time of the
DA-ES was Ts = 0.01. The perturbation logic sk was given
by (6) with frequency of 1 Hz. The BP length was 5 seconds,
with nb − nb = 500. The initial setpoint was θ̂1 = 1. The
objective function, which was unknown to the DA-ES, was:

ψk = exp (0.5 (θk − θ∗)) + exp (−0.5 (θk − θ∗)) , (38)

where the minimizer was θ∗ = 4.75 for 0 ≤ t < 39 and
θ∗ = 1.2 for 39 ≤ t.

Fig. 3 shows the DA-ES updating its setpoint toward the
minimizer through successive setpoint BPs, and responding
to a change in the minimizer. The dashed lines highlight how
the setpoint oscillates within a neighborhood of the mini-
mizer, with the neighborhood either being

(
θ∗ − a

2 , θ
∗ + a

)
,

or
(
θ∗ − a, θ∗ + a

2

)
. Fig. 4 shows the DA-ES minimizing the
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Fig. 3: Minimizer and setpoint of the DA-ES. The red dashed lines represent a region of half the probe step size around
the minimizer, θ∗ ± a
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Fig. 5: Averaged gradient estimate over BPs.

the objective function value for this simulation. Fig. 5 plots
the actual gradient of the objective function evaluated at the
setpoint and the averaged gradient estimate for each BP.

B. DA-ES with Decreasing Probe Amplitude and Setpoint
Update Step Size

In our second experiment, a DA-ES optimized its setpoint
to minimize the value of an unknown objective function, and
decreased its perturbation step size and setpoint update step
size when its setpoint converged to within a neighborhood
around the minimizer, according to the analysis in Section II-
E. As this DA-ES operates over a single dimension, we drop
the subscript denoting the dimension. The discrete action
space was the set of integer multiples of 0.01, with a =
0.01. The sampling time of the DA-ES was Ts = 0.01. The
perturbation logic sk was given by (6) with frequency of 1
Hz. The BP length was 5 seconds, with nb−nb = 500. The
initial setpoint was θ̂1 = 1.

The initial number of discrete perturbation steps was κ1 =
100. When (33) was first satisfied for Ns = 3, κb+1 ← 10.
The second time (33) was satisfied for Ns = 3, κb+1 ← 1.
The objective function of the this simulation was:

ψk = (θk − θ∗)
2
, (39)

with minimizer θ∗ = 2.74.
Fig. 6 plots the minimizer and the DA-ES setpoint and

clearly shows the DA-ES updating its setpoint toward the
minimizer, along with the probe amplitude decay at 25
seconds and 45 seconds. Fig. 7 plots the objective function
averaged over each BP. The objective function greatly decays
as smaller values of sk allow the setpoint to converge much
closer to the minimizer. Fig. 8 plots the probe amplitude and
setpoint update step size, aκb, and shows it twice decreasing
by a factor of 10.

C. DA-ES Over a Multi-Dimensional Action Space

In our third experiment, a DA-ES optimizes its setpoint
across a two dimensional discrete action space (grid) to
minimize the value of an unknown objective function. The
discrete action step size for the first dimension was uniform
with steps of a1 = 1, and the discrete action step size for
the second dimension was uniform with steps of a2 = 0.8.
The sampling time of the DA-ES was Ts = 0.01. The
perturbation logic for the first dimension was defined by (6),
with f1 = 1 Hz and f2 = 1.2 Hz. The BP length was 5
seconds, with nb − nb = 500. The objective function was:

ψk = (θk − θ∗)
T

[
1 0.5

0.5 2

]
(θk − θ∗) , (40)

with minimizer θ∗ = [2.25, −2.26]
T . We consider two initial

setpoints; the first initial setpoint was θ̂1 = [0, 0]
T , and the

second initial setpoint was θ̂1 = [0, 0.8]
T .

Fig. 9 plots the setpoint of the DA-ES for the first initial
conditions and shows that the setpoint converges toward the
minimizer. However, the first dimension of the setpoint does
not oscillate around its optimal value, whereas the second
dimension of the setpoint does. After converging to θ̂b =
[2, −1.6]

T ∈ Ω, the setpoint oscillates between it and θ̂b =
[1, −2.4]

T
/∈ Ω. Fig. 10 plots the objective function and

averaged objective function for the first initial condition, and
Fig. 11 plots the AGE for both channels of the DA-ES.

Fig. 12 plots the setpoint of the DA-ES for the second
initial conditions and shows that setpoint converges toward
the minimizer. In this case, both dimensions of the setpoint
oscillate around their respective optimal values. After con-
verging to θ̂b = [2, −2.4]

T ∈ Ω, the setpoint oscillates
between it and θ̂b = [2, −2.4]

T
/∈ Ω. Fig. 13 plots the

objective function and averaged objective function for the
second initial condition, and Fig. 14 plots the AGE for both
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Fig. 6: Minimizer and DA-ES setpoint. The probe amplitude change from aκb = 1 to aκb = 0.1 can be seen at 25 seconds,
and the change from aκb = 0.1 to aκb = 0.01 can be seen at 45 seconds.
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Fig. 7: Averaged objective function over BPs.

0 10 20 30 40 50 60 70 80

Time [s]

10
-2

10
-1

10
0

Perturbation Zero-Peak Amplitude

Fig. 8: Probe amplitude and setpoint update step size, aκb.
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Fig. 10: Objective function, and averaged value over BPs.
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Fig. 11: Averaged gradient estimate over BPs.

channels of the DA-ES.
This simulation highlights both the importance of the

initial condition of the DA-ES algorithm, and the limitations
of the algorithm, namely as the setpoint update is constrained
to fixed length discrete steps in each dimension, the setpoint
update is not likely to align with the negative gradient.

Finally, we modify this experiment by implementing the
heuristic for decreasing the probe step size and setpoint
update size. For this modification the discrete step sizes were
changed to a1 = 0.25 and a2 = 0.2. The initial number of
step sizes was κ1 = 4 and κ2 = 4. When (33) was satisfied
for Ns = 3, κ1 ← 1 and κ2 ← 1. The initial setpoint
was θ̂1 = [0, 0]

T . Simulation results are plotted in Fig. 15,
which shows the probe step size decay at 30 seconds, and
the setpoint converge to values closer to the minimizer than

in the original experiment.

IV. CONCLUSION

In this work, we propose an Extremum Seeking algo-
rithm that operates over discrete action space, which we
call discrete action Extremum Seeking (DA-ES). We first
introduce the DA-ES algorithm, and describe its operation, in
Section II. Section II-C details the stability and convergence
properties of DA-ES. Next, we discuss an extensions to DA-
ES, such as one that implements a heuristic to decrease
the discrete step size amplitude as the setpoint converges
to the optimal value. Section III presents three experiments
in which an DA-ES algorithm optimizes its setpoint over a
discrete action space and minimizes an the value of a convex
objective function. These simulations show the efficacy of the
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Fig. 12: Minimizer and DA-ES setpoint.
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Fig. 13: Objective function, and averaged value over BPs.
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Fig. 14: Averaged gradient estimate over BPs.
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Fig. 15: Minimizer and DA-ES setpoint for experiment with decreasing probe amplitude and setpoint update step size.

DA-ES approach for single and multidimensional discrete
optimization.

We plan to continue and extend this work in several key
areas. First, we plan to examine DA-ES which considers both
the magnitude and sign of the gradient estimate in its setpoint
update process. We plan to examine DA-ES over single and
multidimensional nonuniform discrete action spaces. We then
plan to examine the interaction between multiple separate
asynchronous DA-ES operating in parallel to minimize a
common objective function. Finally, we plan to examine
DA-ES operating in conjunction with ES operating over
continuous action spaces to optimize mixed-integer convex
programs.
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